skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Heelis, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Numerical forecasts of plasma convective instability in the postsunset equatorial ionosphere are made based on data from the Ionospheric Connections Explorer satellite (ICON) following the method outlined in a previous study. Data are selected from pairs of successive orbits. Data from the first orbit in the pair are used to initialize and force a numerical forecast simulation, and data from the second orbit are used to validate the results 104 min later. Data from the IVM plasma density and drifts instrument and the MIGHTI red‐line thermospheric winds instrument are used to force the forecast model. Thirteen (16) data set pairs from August (October), 2022, are considered. Forecasts produced one false negative in August and another false negative in October. Possible causes of forecast discrepancies are evaluated including the failure to initialize the numerical simulations with electron density profiles measured concurrently. Volume emission 135.6‐nm OI profiles from the Far Ultraviolet (FUV) instrument on ICON are considered in the evaluation. 
    more » « less
  2. Abstract We report an extraordinary L‐band scintillation event detected in the American sector on the night of 23–24 March 2023. The event was detected using observations distributed from the magnetic equator to mid latitudes. The observations were made by ionospheric scintillation and total electron content (TEC) monitors deployed at the Jicamarca Radio Observatory (JRO, ∼−1° dip latitude), at the Costa Rica Institute of Technology (CRT, ∼20° dip latitude), and at The University of Texas at Dallas (UTD, ∼42° dip latitude). The observations show intense pre‐ and post‐midnight scintillations at JRO, a magnetic equatorial site where L‐band scintillation is typically weak and limited to pre‐midnight hours. The observations also show long‐lasting extremely intense L‐band scintillations detected by the CRT monitor. Additionally, the rare occurrence of intense mid‐latitude scintillation was detected by the UTD monitor around local midnight. Understanding of the ionospheric conditions leading to scintillation was assisted by TEC and rate of change of TEC index (ROTI) maps. The maps showed that the observed scintillation event was caused by equatorial plasma bubble (EPB)‐like ionospheric depletions reaching mid latitudes. TEC maps also showed the occurrence of an enhanced equatorial ionization anomaly throughout the night indicating the action of disturbance electric fields and creating conditions that favor the occurrence of severe scintillation. Additionally, the ROTI maps confirm the occurrence of pre‐ and post‐midnight EPBs that can explain the long duration of low latitude scintillation. The observations describe the spatio‐temporal variation and quantify the severity of the scintillation impact of EPB‐like disturbances reaching mid latitudes. 
    more » « less
  3. Abstract Measurements from the Ionospheric Connections Explorer satellite (ICON) form the basis of direct numerical forecast simulations of plasma convective instability in the postsunset equatorialFregion ionosphere. ICON data are selected and used to initialize and force the simulations and then to test the results one orbit later when the satellite revisits the same longitude. Data from the IVM plasma density and drifts instrument and the MIGHTI red‐line thermospheric winds instrument are used to force the simulation. Data from IVM are also used to test for irregularities (electrically polarized plasma depletions). Fourteen datasets from late March 2022, were examined. The simulations correctly predicted the occurrence or non‐occurrence of irregularities 12 times while producing one false positive and one false negative. This demonstrates that the important telltales of instability are present in the ICON state variables and that the important mechanisms for irregularity formation are captured by the simulation code. Possible refinements to the forecast strategy are discussed. 
    more » « less